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Physiological Measurement

Recent advances in physiological 
oscillations

Physiological variables exhibit oscillatory patterns on many time scales (Mackey and Glass 
1988, Buzsaki and Draguhn 2004, Stefanovska 2007). Compared to random behavior these 
periodical patterns convey to the whole system flexibility in presence of changing demands 
and variable environment. Indeed, a rhythmical activity enables temporal coordination among 
physiological process via synchronization and entrainment, guaranties efficient hierarchies 
among separate parts of the system, facilitates prediction of repetitive events favoring the 
preparation of the organism before the occurrence of event, minimizes energy expenditure, 
and allows storage and transmission of an infinite amount of information via frequency encod-
ing (Rapp 1987). The multiplicity of the observed scales is the consequence of the need of 
living organisms to cope with sudden demands, such as during fight, and slow adaptations, 
such as those driven by seasons or aging, and the result of the natural selection that might have 
favored individuals able to extend the aforementioned advantages over a range of frequencies 
as wide as possible.

Periodical fluctuations of physiological variables are the result of the activity of self-sus-
tained oscillators located in various places in our body. One of these autonomous oscillators 
is the heart responsible for oscillations of several physiological variables including arterial 
pressure and blood flow at the cardiac frequency and its multiples. Self-sustained oscillators 
interact with each other in such a way that their rhythmical activity might be modulated by the 
action of others. For example, the frequency of the heart is modulated by the respiratory cent-
ers located in the brain stem through the vagal innervation of the sinus node imposing changes 
to the heart period synchronous with the respiratory rate that contribute to the respiratory 
sinus arrhythmia (Eckberg and Karemaker 2009). The activity of these autonomous oscilla-
tors perturbs mechanisms responsible for controlling physiological variables and the resulting 
response might appear as a periodical activity as well. For example, the cardiac-related rhythm 
of the integrated muscle sympathetic nerve activity is mainly due to the periodical modifica-
tion of the central inhibition induced by pulse-synchronous baroreceptor nerve activity driven 
by arterial pressure variations (Barman et al 2003). The oscillatory behaviors of physiological 
variables are not only the consequence of the incessant activity of internal rhythmical sources 
but also of periodical external inputs. For example, synchronization between heart rate and 
stride frequency, usually termed cardiolocomotor synchronization, was observed during run-
ning (Kirby et al 1989) and circadian variations are observed in many physiological variables 
(Millar-Craig et al 1978). Physiological fluctuations occurring at frequencies below the car-
diac one (i.e. below 0.5 Hz in humans in resting supine condition) is usually referred to as 
variability. This term gained popularity with the spreading of the analysis of the variations of 
inter-beat interval from the electrocardiogram (Task Force 1996). Physiological fluctuations 
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are referred to as vasomotion, and usually assessed below 0.15 Hz, when analyzed from sig-
nals related to blood circulation through the vascular system. Variability was widely assessed 
with special focus on cardiovascular system (Cohen and Taylor 2002). Although variability 
could be interpreted as a measurement error or as a harmless side effect of the application of 
the homeostatic principle aiming at maintaining the relative constancy of the internal milieu 
of the organism, its more profound significance was immediately recognized (Billman 2011). 
Some pioneering works (Akselrod et al 1981, 1985, Colantuoni et al 1984, Pagani et al 1986, 
Berger et al 1997) made possible the quantitative analysis of variability and proved that it car-
ries information about regulatory mechanisms. The analysis of spontaneous variability became 
more important when it was realized that an abnormal or missing response could be utilized 
as a hallmark of a pathological state and variability markers were very sensitive in identifying 
a dysfunction (Task Force 1996). However, given the intricate nature of interactions among 
physiological systems featuring autonomous rhythm generators, complex nonlinear relation-
ships, and nested reflexes with different hierarchies and latencies, disentangling mechanisms, 
assessing the gain of specific pathways, disambiguating causal effects, identifying closed loop 
relations, evaluating associations in specific temporal directions and conditioning out con-
founding factors are challenging tasks. Modern signal processing can be fruitfully exploited 
to provide the separate characterization of the internal perturbations and evoked responses and 
to estimate the strength of the dependency of the response on the stimulus while accounting 
for indirect influences and the eventual presence of buffering effects (Stankovski et al 2015, 
Muller et al 2016, Penzel et al 2016, Porta and Faes 2016).

Vasomotion, on the other hand, attracted much attention from those studying hemody-
namic properties of the cardiac activity and blood flow evaluated by quantification of rhythmic 
diameter changes of the vessels (Colantuoni et al 1984), optical methods such as laser Doppler 
flowmetry (Stefanovska et al 1999), or white light or near infra-red spectroscopy (Obrig et al 
2000). Simultaneous recording of electrical and hemodynamic activity in resting humans have 
identified involvement of oscillatory activities at frequencies as low as 0.01 Hz and below, 
attributable to myogenic, neurogenic, endothelial and metabolic processes (Shiogai et al 2010, 
Aalkjaer et al 2011), The contribution of the vascular system to the oscillatory behavior origi-
nates from rhythmic activity of the smooth muscle cells in the vascular walls, the rhythmic 
activation of sympathetic nerves innervating the vessels and the involvement of endothelial 
cells lining the inner layer of the vascular walls. The ultimate goal of the cardiovascular system 
activity is to bring the nutrients to each cell and take the waste products of their metabolism, 
processes that presumably need to be synchronized with the cellular metabolic oscillations 
that have already been observed in vitro (Aon et al 2003, Gustavsson et al 2012). The flow of 
the blood, as well as the neuronal signaling processes, requires close coordination of cardio-
vascular and brain activity (Stefanovska 2007). Monitoring changes in these interactions with 
various conditions, like e.g. anesthesia (Stankovski et al 2016) may be expected to yield new 
insights into the underlying physiology.

Applications of modern signal processing techniques to fluctuations of physiological vari-
ables acquired over time with a given temporal resolution is not only a mere exercise of 
computational skills but a practice useful in physiology to understand dependences among 
variables, in medicine to typify pathological states and improve diagnosis and in clinics to pre-
dict outcome of an intervention and performing risk assessment. Just to provide few examples 
of relevant applications of signal processing techniques to physiological oscillatory patterns 
that led to practical advancements in clinics and provided turning points in understanding 
the complexity of the physiological interactions, we recall that: (i) Bauer et al (2008) dem-
onstrated the clinical value of characterizing the physiological variations of heart rate fol-
lowing an internal stimulus such as the isolated premature ventricular contraction; (ii) La 

Physiol. Meas. 38 (2017) E1



E3

Editorial

Rovere et al (2011) proved the prognostic value of cardiac baroreflex sensitivity estimated 
from spontaneous variations of heart period and systolic arterial pressure and its nonredun-
dant value compared to the gold standard invasive estimate based on the administration of 
vasoactive drugs; (iii) Bashan et al (2012) put physiology under a system-wide perspective 
in which a pathophysiological state can be fully typified by estimating via signal processing 
techniques the strength of the connections among the constituents of a physiological network 
describing the functioning of the entire organism; (iv) Park and Friston (2013) and Seth et al 
(2015) suggested that modeling and causality approaches might allow one to move beyond 
the information associated to regional activations of cerebral areas toward the characterization 
of functional circuits; (v) Tononi et al (2016) postulates that information theory could provide 
tools to unveil consciousness and measure the quality and quantity of a subjective experience. 
Remarkably, conclusions reached by the aforementioned studies were drawn without being 
necessary to implement new experimental setups or inventing original devices but by looking 
at the already acquired signals under new perspectives that have in common the exploitation 
of rhythmical changes of physiological variables.

The European Study Group on Cardiovascular Oscillations (ESGCO) and the Berlin 
Biosignal Group (BBG) focused their respective meetings, namely the 9th ESGCO meeting, 
10–14 April 2016, Lancaster, UK, www.physics.lancs.ac.uk/ESGCO2016/ and the BBG meet-
ing, 7–8 April 2016, Berlin, Germany, http://2016.biosignal.berlin/, on the rhythmical varia-
tions of physiological variables and on the tools needed for their measurement, processing and 
interpretation. This area, at the crossing between biology, biophysics, bioengineering, physi-
ology, medicine and technology, is the core of the activity of both groups since their begin-
nings. More specifically, the ECGCO conference was centered on complexity and multiscale 
analyses of oscillatory biological signals and their nonlinear interactions and featured also a 
rich and deep discussion on the origins and nature of cellular, microvascular, cardiovascular 
and neurophysiological oscillations. Moreover, it was recognized that all biological oscilla-
tions can be treated in the same way mathematically, i.e. as resulting from non-autonomous 
continuously perturbed and mutually interacting systems. However, a better understanding of 
their underlying biophysics and their physiological origin is needed. The BBG meeting was 
centered on the acquisition and analysis of electrical and magnetic fields of the body and, in 
particular, on the similarities and differences of methodological approaches and their clinical 
relevance. Some of the work presented at these two meetings is published in this focus issue 
of Physiological Measurement. A common feature is the signal processing approach to the 
problems of biological oscillations. Selection was made via the regular peer-review process of 
the journal over expanded versions of the contributions originally presented in the aforemen-
tioned meetings and submitted to this focus issue. The resulting collection of articles covers 
advanced methods for multivariate time series analysis, spectral decomposition, information 
processing, complexity assessment, causality estimation and synchronization quantification 
with applications to cardiovascular control, neurophysiology, cardiovascular physiology and 
neuroscience.

The common denominator of the contributions listed in the present issue is to exploit 
unconventional signal processing techniques over physiological variations recorded routinely 
in standard hospital facilities to characterize the functioning of the underlying system and 
the interactions among parts of the same system or among different systems according to a 
holistic view. The final practical aim is to facilitate the identification of deviation from the 
normal behavior, the characterization of a population and its separation from groups with 
apparently similar features, the monitoring of the evolution of system characteristics over time 
and the quantification of dynamical interactions among system constituents. The contrib utions 
can be roughly divided into three categories according to the complexity of the approach as 
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categorized by the number of different signals necessary to perform the analysis. Among the 
applications of univariate approaches requiring the acquisition of one signal Castiglioni and 
Merati (2017) performed fractal analysis of heart rate variability series in paraplegic individu-
als and found that this analysis was superior to more traditional power spectral analysis in 
a subgroup of paraplegic individuals featuring an intact cardiac control; Hoyer et al (2017) 
summarized the novel developments in monitoring fetal maturation using heart rate variability 
recordings; Corino et al (2017) performed atrial fibrillation detection from interdiastolic pulse 
wave interval series recorded via a wristband device with remarkable sensitivity and speci-
ficity in discriminating atrial fibrillation from sinus rhythm and different arrhythmias; Masé 
et al (2017) evaluated the dependence of the ventricular response on atrial activity and atrio-
ventricular conduction variability markers computed in time and information domains during 
episodes of atrial flutter and atrial fibrillation; Wejer et al (2017) computed the complexity 
of patterns extracted cardiovascular variability series in patients with an history of vasova-
gal faints during orthostatic challenge; Gizzi et al (2017) proposed an original approach for 
the quantification of action potential amplitude alternans recorded from isolated right canine 
ventricles and applied it in hypothermic conditions; Elstad et al (2017) studied the oscillatory 
patterns of acral skin blood flow below 0.1 Hz during the lowering of the ambient temperature 
within the thermoneutral zone via wavelet transformation in healthy subjects; Sorelli et al 
(2017) addressed the issue of spatial heterogeneity of microcirculation in healthy individuals 
through a model-based approach fitting the response of skin blood flow to local heating and 
a wavelet transformation evaluating the spectral content of the signal below 1 Hz. Among 
the applications of approaches requiring the acquisition of two signals Javorka et al (2017) 
assessed directionality of the interactions between heart period changes and slow oscilla-
tions of arterial pressure during situations of sympathetic activation with the specific aim of 
understanding how the structure of the interactions varied as a function of the fiducial point 
selected over arterial pressure recordings; Mazzucco et al (2017) studied phase synchroni-
zation between heartbeat, as detected from surface electrocardiogram, and the ventilator in 
respiratory failure patients admitted in critical care units and proved that cardioventilatory 
phase interactions depended on the mode of mechanical ventilation; Berg et al (2017) dem-
onstrated that cardiorespiratory coordination increased in preeclampsia using an approach 
where respiratory activity was inferred from surface electrocardiogram; Kuhnhold et al (2017) 
compared five different methods for quantification of cardiorespiratory phase synchronization 
in a large cohort of post-myocardial infarction patients. Among the applications requiring the 
acquisition of three or more signals, Porta et al (2017) proposed a method in the information 
domain to estimate the redundancy of physiological control mechanisms in contributing to 
spontaneous fluctuations of heart period and arterial pressure in healthy subjects and applied 
it to a cohort of subjects with different ages; Krefting et al (2017) applied a time delay stabil-
ity approach to polysomnographic recordings in healthy subjects to describe the interactions 
among different physiological systems and assess their modifications with gender and age; 
Bari et al (2017) proved that an information domain directionality method applied to cerebro-
vascular and cardiovascular variabilities can identify the impaired regulatory mechanisms in 
patients prone to develop postural syncope.

We hope that the contributions presented in this issue can, on the one hand, stimulate the 
design of new tools devoted to improve specificity of the information derived from varia-
tions of physiological variables and, on the other hand, encourage the application of existing 
methods to larger databases with the main purpose of validating observations, standardizing 
approaches and indexes and accelerate the utilization of the methods in clinical settings.
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